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Abstract— Aerial tracking of dispersed crowd groups with a
single target window is a novel and one of the most challenging
problems in Computer Vision and Robotics. Considering crowd
group as a multi-object tracking problem can often lead to
computational burden and frequent target mismatch due to
numerous occlusions, whereas a single window can efficiently
focus on the target. Recent progress on single object tracking
(SOT) algorithms is achieved by learning a generic discrimina-
tor model from object tracking datasets, continuously updated
during the testing steps. However, while tracking a group of
crowd with a single window, the rigid discriminator can not
generalize frequent group reformation, binomial dispersion, and
crowd shape changes due to less knowledge about human-to-
human interactions. To alleviate the issues, we propose a novel
photo-realistic Unreal UAV Crowd Tracking (UUCT) dataset,
which benchmarks aerial crowd group movements into several
attributes. Second, we formulate a novel algorithm, Hybrid
Motion Pooling (HyMP), which extends the existing SOT
algorithm, DiMP, by exploiting graph convolutional networks
for learning human groups and low-rank bilinear pooling for
capturing temporal group reformations end-to-end. Then, we
compare HyMP with state-of-the-art (SOTA) trackers on UUCT
to demonstrate HyMP’s effectiveness in group tracking. Also,
we illustrate the generalizability of HyMP by evaluating on the
existing benchmarks. On average, HyMP outperforms SOTA
approaches by 7.5% on UUCT and 4.3% on related datasets.

I. INTRODUCTION

Visual Object Tracking (VOT) is one of the fundamental
and active research fields in computer vision. VOT is still
an open problem, with many applications in robotics, au-
tonomous systems, and surveillance [1], [2], [3], [4]. Despite
having significant progress in recent years [5], [6], [7],
[8], the problem yet remains challenging due to several
limiting factors including occlusion, appearance variation,
motion abruptness, fast scale change, etc. To alleviate the
issues, some recent works introduced several invariant feature
descriptors, e.g., Histogram of Oriented Gradients (HOG)
[9], pre-trained Convolutional Neural Networks (CNN) [5],
and adaptively learned lightweight CNN [10] weights. These
descriptors are widely used in correlation filters for target
translation [9], [11], [12]. The correlation filter-based ap-
proach is effective due to the high tracking speed for using
correlation computation over the Fourier domain. However,
having high learning rates for filter update leads it to usually
failing to maintain long-term memory target appearance,
which was further alleviated by Siamese Networks [13],
[14] and other deep learning approaches [15], [16], [17]
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Fig. 1: Comparison of our HyMP tracker with state-of-the-art SOT DiMP
[16] and GCT [18]. For both sequences (1291-1593 and 1569-1677), DiMP
and GCT fail to detect crowd reformation and translate wrong target window.

by designing a robust discriminator model to distinguish
target from the background. However, these are still prone
to multiple instances of the same target, shape deformation,
and viewpoint changes, leading to domain-specific visual
trackers’, i.e., algorithms for a specific purpose design.

Unmanned Aerial Vehicles (UAVs) with vision have un-
veiled a new research direction to many novel applications,
including surveillance [19], wild-life monitoring [20], crowd
tracking, and aerial cinematography [21]. Aerial tracking
can achieve capabilities to be applied in a diverse set
of objects, including animals, boats, humans, which might
be difficult to achieve from the ground, a major reason
behind the development of unified tracking algorithms for
UAVs. Recently, several generic benchmark datasets includ-
ing UAV123 [22], UAVDT [23], DTB70 [24] have been
proposed to evaluate tracking algorithms from UAVs. To this
end, a specific benchmark for tracking human-formed crowd
group is required as it has emerged into diverse applications.

Tracking a crowd group of humans from the aerial view-
point is a fairly new problem in the community. The primary
goal of crowd group tracking includes focusing on a target
group, regardless of binomial dispersion from the track
window, which can be easily formulated as a multi-object
or person (MOT) tracking task [25], [26], [27]. However,
we argue that, when a set of crowd moves, there would be
frequent group formation and deformation by humans. This
phenomenon would require tracking a large crowd sample
and prone to mislead the MOT algorithm with occlusions and
unpredictable motion changes [28]. As a crowd group move-
ment belongs to almost identical motion instances, a well-
trained single object tracker (SOT) can track with a single
yet larger bounding box. This approach introduces additional
complexity of crowd dispersion, continuous reformation, out
of camera view, global crowd target translation mismatch,
and exhaustive scale update. Existing SOTs would largely
fail to meet the above constraints, because box prediction and
scale estimation approaches of existing algorithms usually
designed for single objects [29] which do not face any abrupt
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Fig. 2: Five random frames (first row) and corresponding segmentation
images (second row) of our UUCT dataset.

shape reformation over frames. As a result, both correlation
filter [30], [31], [32], [12] and deep learning [16], [15],
[5], [33] trackers provide wrong target box prediction and
scale. Moreover, according to recent evaluations on aerial
tracking datasets [22], [23], [24], very few trackers became
successful in the long-term tracking having false target pre-
diction and inaccurate scale change estimation, accordingly.
To alleviate both challenges, we propose a novel, photo-
realistic crowd group tracking dataset, Unreal UAV Crowd
Tracking (UUCT), which consists of 70 long-term sequences
of crowd group distributed in 7 distinct attributes, captured
from UAVs. To our best knowledge, UUCT is the first dataset
for aerial crowd group tracking. Furthermore, we propose a
novel tracking architecture that learns human-to-human in-
teraction without direct supervision using graph convolution
[34] and results in better bounding box regression on the
group with long-term tracking in the pipeline. Our four-fold
contributions are summarized below:

• We introduce crowd group tracking problems from
aerial viewpoints, followed by a photo-realistic bench-
mark dataset, UUCT.

• We evaluate state-of-the-art algorithms’ performance
and unveil their major limitations on the UUCT dataset.

• We exploit human-human interaction and crowd group
formation learning using graph and propose a novel
approach, Hybrid Motion Pooling (HyMP) on DiMP
[16], to track crowd groups with a single target window.

• We evaluate our proposed algorithm in SOT benchmarks
including UUCT to demonstrate our algorithm’s gen-
eralizability and robustness compared to existing SOT
approaches, including our baseline tracker DiMP.

II. RELATED WORK

A. Existing Tracking Benchmarks

Along with UAV-only tracking datasets such as UAV123,
UAV20L [22], and DTB70 [24], we benchmark our proposed
algorithm on widely used OTB100 [35] and VOT2018 [36].
The reasons behind these selection is described below:
OTB100 [35]: This tracking dataset is composed of 100 SOT,
non-UAV sequences distributed in 11 attributes. Some of the
tracking sets have taken from aerial viewpoints.
VOT2018 [36]: VOT2018 is 2018 version from the Visual
Object Tracking challenge with 60 short, yet, challenging
videos, annotated with rotating bounding boxes.
UAV123 and UAV20L [22]: This dataset comprise 123
short and 20 long tracking sequences taken from the UAVs,
annotated in 12 attributes, with 8 sequences using simulators.

DTB70 [24]: DTB70 is a challenging dataset with 70 UAV
tracking sets, where the UAV also moves during target
tracking. In UUCT, we included 55 UAV motion scenarios
to ensure the robustness while benchmarking the algorithms.

Table I compares these datasets with UUCT on several pa-
rameters including total length, attributes, and clip duration.
In terms of total duration and frames, UUCT excels all by
a wide margin. Moreover, UUCT holds mean 2535 frames,
which is far higher than other datasets except for UAV20L,
has only 20 long-term sequences compared to 70 by UUCT.

B. Previous Tracking Algorithms

Correlation Filter was popularized with seminal work
MOSSE [37], extended by multi-scale correlation filter pro-
posed on the DSST tracker [9], which computes adaptive fil-
ters using HOG features, including a single-dimensional filter
to handle scale change responses. To alleviate the limitation
of context information, online update, long-term tracking,
and target drift, background-aware [31], context-aware [32],
spatially regularized [30] filters have been proposed. The
transition from correlation filters to deep learning started
with applying correlation filters over deeply learned image
features than traditional hand-crafted features. HCFT [38]
algorithm employed pre-trained CNN layer weights hierar-
chically to learn multiple correlation filters. LCT [5] tracker
addressed the limitation of long-term memory of target ap-
pearance mismatch and proposed target re-localization. Later,
end-to-end tracking have initiated with siamese networks
[13], followed by improvements with graph convolutions
[34], robust scale update [15], and target regression [16].

C. Spatio-Temporal Graphs

Since graph has been explored for scene representation
and retrieval in images [39], [40], [41], it had caught atten-
tion for several tasks including person re-identification [42],
skeleton-based action recognition [43], video representation
[44], localization [45], [46], visual relationship [47], etc.
Recently, [18] performed visual tracking using graph convo-
lutional networks [34] which leveraged straightforward graph
feature concatenation. However, instead of regular fusion,
we apply computationally efficient low-rank bilinear pooling
[48] to capture temporal crowd reformation with higher order
interaction, discussed in detail on section IV-D.

III. PROPOSED UUCT DATASET

UUCT aims to design a robust benchmark to facili-
tate crowd group tracking algorithm development. Figure
2 contains some random frames from UUCT. This section
discusses four key protocols of dataset development as well
as simulation setup and ground truth generation methods.

• Photorealistic Simulation: In order to keep the dataset
congruent with the real world, we study real world sce-
narios thoroughly to develop diverse human characters
with realistic movement. We are also able to obtain
segmentation and depth images along with RGB frames.



TABLE I
COMPARISON OF UUCT WITH STATE-OF-THE-ART RELATED BENCHMARK (BOTH UAV AND GENERIC) DATASETS IN THE LITERATURE

Benchmark OTB100 [35] VOT2018 [36] UAV123 [22] UAV20L [22] DTB70 [24] UUCT (ours)

Number of Videos 100 60 123 20 70 70
Minimum Frames 71 41 109 1717 - 1334

Mean Frames 590 356 915 2934 - 2535
Maximum Frames 3872 1500 3085 5527 - 4283

Total Frames 59K 21K 113K 59K - 161.6K
Total Duration (minutes) 32.8 11.9 62.5 32.6 - 89.8

Frame Rate 30 FPS 30 FPS 30 FPS 30 FPS 60 FPS 30 FPS
Num. of Attributes 11 N/A 12 12 11 7

UAV Sequences (Yes/No) No No Yes Yes Yes Yes
Segmentation (Yes/No) No No Yes* Yes* No Yes
Depth Image (Yes/No) No No No No No Yes

• Long-Term Tracking: We ensure long-term tracking
on each sequence to capture abrupt crowd group refor-
mations. According to Table I, each UUCT sequence
holds an average of 2535 frames on 30 FPS.

• Attribute Diversity: We build UUCT on 7 distinct
attributes described in Table II, where same videos can
fall into multiple attributes, ensuring sequence diversity.

• High-Quality Ground Truth (GT): One of our key
goals is to compute GT without dependency on human
input. The last column of Table II presents category-
wise box overlap error [15] (lower is better) between
our GT generator and human annotation on 70 videos.

A. Data Collection: Simulation Setup
We developed the simulator using Unreal Engine 1 with

Airsim [49], which consists of a hardware-in-the-loop simu-
lation to easily transfer control to a UAV hardware. We used
Adobe Mixamo 2 for character modeling and animations. AI
Behavior Toolkit 3 has been utilized to define the behavior
of the non-player characters, i.e., humans, when they are
spawned into the simulator world. Then, predefined pathways
were laid out for humans to follow and move accordingly. In
some levels no paths have been set to enable random human
movement. We set simulator world to have only humans and
no environmental clutter, which is arguably important for
initial benchmarking. We also ensured the humans move at
variable speeds, including suspended motion, slow walk, and
moderate jogging. To capture the frames, we have utilized
Airsim API to deploy single UAV in our pre-generated levels
and fetch RGB, segmentation, and depth image sequences,
which we normalize to a framerate of 30 later on.

B. Annotation: Ground Truth Design Principles
We leverage the segmentation images to generate ground

truth boxes of crowd group. Initially, we mask the humans
using previously set segmentation color code, followed by
grouping using contour search. Then, we apply the principles
below to determine ground truth:

• When all segmentation bounding boxes are clustered
within a certain location with frequent overlaps accord-
ing to Figure 3 (a) or aligned diagonally as stated in

1https://www.unrealengine.com
2https://www.mixamo.com
3https://www.youtube.com/watch?v=BpbXnaTh-sk

Figure 3 (b), the ideal final box in these cases would be
a placement where the Intersection over Union (IoU) of
the final box with each segmentation boxes maximized.

• When the segmentation bounding boxes have extreme
relative distances between themselves as shown in Fig-
ure 3 (c), the ideal final box placement would be where
it would cover any one among the boxes, but not both.

IV. HYBRID MOTION POOLING ARCHITECTURE

A. Baseline: Discriminative Model Prediction

Discriminative Model Prediction (DiMP) tracker [16] in-
corporates two fundamental components, model initializer
and optimizer. The initializer captures the target object
properties where the optimizer updates the model iteratively
by discriminating between the target and background in-
formation as a robust classifier. The trained model weight
f = ρ(χsample) is the convolutional filter which is learned
from the sample training pairs χsample = {(vj , cj)}mj=1 with
a model predictor network ρ. Here, vj are the feature set
extracted by a pre-trained CNN δ [50] and cj ∈ R2 is the
centroid of the box, respectively. f is further utilized for
target localization, learned using the following squared loss:

` (f) =
1

|χsample|

m∑
j=1

‖∇ (vj ∗ f, cj)‖2 + ‖τf‖2 (1)

Here, ∗ is the convolution operator between vj and f ,
further passed to a residual function ∇ to calculate the
difference between the predicted output from the convolution
and the Gaussian [37] of the actual centroid of the box
cj . f is iteratively updated offline based on m samples
as both training and testing from COCO [51], TrackingNet
[52], LaSOT [53], and GOT10k [54] dataset with backbone

Fig. 3: Principles for generating ground truth. Derived segmentation boxes
are in green. Yellow and Red boxes are preferred and rejected candidates.



TABLE II
ATTRIBUTE DETAILS WITH CLIP NUMBERS C, TOTAL DURATION IN MINUTES D, AND OVERLAP ERROR OE TO BENCHMARK THE UUCT DATASET

UUCT Dataset Attribute Names Attribute Description C D OE

CSMO: Crowd Split and Merge Occlusion A moving crowd splits into two distinct crowd groups and merge into one 21 27.1 0.59

CSDOV: Crowd Split and Dispersed Out of View Similar to CSMO, but one of the groups leaves the field-of-view (FOV) of UAV 21 27.7 0.76

SUMC: Static UAV and Moving Crowd Crowds move within the FOV of a static UAV positioned at a fixed height 15 18.7 1.34

MUMC: Moving UAV and Moving Crowd Both the UAV and the crowd are moving in certain directions 55 71.8 2.23

CSSRM: Crowd Sudden Stop and Resume Movement A crowd starts moving, suddenly stops and resumes movement 14 16.9 1.38

JCM: Jittery Camera Motion The UAV uses fast, random rotation causing jerky camera motion 36 43.1 1.40

SV: Scale Variation Bounding box around the crowd alters notably compared to first frame 45 55.1 1.64

weight from ImageNet data [55]. Moreover, bounding box
regression [15] is performed in the second stage using the
loss between predicted box from the test sample and ground
truth box IoU and added with the regular loss `. During
online tracking, f is updated after each empirical timestep.
Despite sufficient discrimination capabilities between target
and background, DiMP has two fundamental drawbacks.
First, the algorithm counts the target window as objective and
learns to find a particular region with the greatest correlation
response. This property will objectively down perform when
several single-category objects, i.e., humans, form groups,
and continue frequent deformation. Second, f is trained on a
fixed set of object movement information, which lacks crowd
group data mentioned earlier. Because crowd groups impose
radically distinguishable movement patterns across space and
time On the other hand, crowd groups’ movement can not be
easily discriminated due to frequent spatial interaction. Also,
crowd groups deform in uncountable patterns, as discussed
in Figure 1. We propose a novel approach by formulating the
multiple-human interaction in spatial graph ΦS , followed by
incorporating their motion information and direction with hy-
brid motion pooling using temporal graph ΦT . The resultant
knowledge captures crowd interaction patterns jointly with
the filter f , which results in robust, single box crowd group
localization and tracking.

B. Spatial Graph Learning
To capture spatial interaction between the human agents

along with group detection, we design a spatial graph, ΦS .
At time step t, the frame ft is passed through a object detec-
tor network to form γt = {(ϑ1

t , b
1
t ), (ϑ

2
t , b

2
t ), ..., (ϑ

n
t , b

nt
t )},

where ϑit ∈ R1×d denotes d dimensional object features and
bit ∈ R4 is respective bounding box coordinates at frame
t. We further truncate γt and keep the objects only labeled
as person. To capture interaction between the persons, we
observe that, people having relative closer spatial location
are more likely to form groups. Based on the assumption,
we build spatial graph by connecting the bounding boxes bit
with respective normalized Intersection over Union (IoU) ζ:

ΦStij =
eζ

ij
t∑nt

j=1 e
ζijt

(2)

Here, ΦStij ∈ Rn×n is the spatial adjacency matrix element at
position (i, j), captures the interaction between two persons

with ζijt = IoU(bit, b
j
t ). According to prior practices [56],

[57], we incorporate softmax function for normalization
rather than adding identity matrix to the diagonals. The
interaction information from ΦStij indicated potential crowd
groups among the detected persons, followed by their global
movement pattern, captured by motion pooling.

C. Adaptive Crowd Group Learning

While spatial graph can detect crowd groups and ap-
pearance changes, it can not discriminate between human
movements and group deformation over time. At first, we
exploit the temporal information by connect the frames
through pair-wise cosine similarity of the features ϑit and
build temporal graph ΦT as:

ΦTtij =
ecos(ϑi

t,ϑ
j
t+1)∑nt+1

j=1 e
cos(ϑi

t,ϑ
j
t+1

)
(3)

Here, ΦTtij ∈ Rn×n+1 defines temporal adjacency matrix
element at position (i, j), captures the crowd movement
by connecting the persons over time step t using cosine
similarity function cos(ϑit, ϑ

j
t+1) between two vectors.

The temporal and spatial adjacency matrix elements, i.e.,
edges aggregate a fully connected graph over time. After
that, the spatio-temporal graph, ΦST is built by merging both
spatial and temporal matrices as below:

ΦST =


ΦS1 ΦT1 0 · · · 0
0 ΦS2 ΦT2 · · · 0
0 0 ΦS3 · · · 0
...

...
...

. . . 0
0 0 0 · · · ΦSt

 (4)

Here, ΦST ∈ RN×N is composed of ΦSt and ΦTt . N =∑T
t=1 nt is total number of detected persons over the frames,

1−T . The 0s are the zero-valued matrices, varies shaped by
adjacent spatial and temporal matrices.

Now, we update the graph by using the standard Graph
Convolution Network (GCN) [34] as below:

Cl+1 = σ(Cl + λ̄−
1
2 ΦST λ̄−

1
2ClW l) (5)

Here, W l ∈ Rdm×dm is the feature matrix at layer l, dm is
the dimension defined by the model. λ̄ is the diagonal degree
matrix, where λ̄ii =

∑
j ΦSTij . Due to the effectiveness of

nonlinear activation function [43], we use ReLU as activation



Fig. 4: An end-to-end pipeline of continuous crowd target ybb translation using HyMP architecture. Initially, the target’s global image feature and box is
trained using DiMP (2nd left row). The same sequence’s human bounding box coordinates (bottom left row) and features for each box are passed to the
graph building module. Later, learned representation is fused with DiMP features using hybrid motion pooling, further convolving with each test frame
(top left row), consecutive locations are predicted. The self-loop on DiMP optimizer and adaptive crowd learning module iteratively update ∂T .

function σ. Cl + 1 ∈ RN×dm is the activation from layer
l+ 1, formulated by 1×1×1 convolution on the Cl, followed
by multiplication with λ̄−

1
2 ΦST λ̄−

1
2 . C0 is the stacked γ0

to bootstrap the features, defined as: C0 = ∪γW 0, where
W 0 ∈ Rd×dm transforms the features ϑit from d dimension
to dm, followed by a row-wise feature aggregation, ∪ on
all time steps. Further, average pooling is performed on the
Lth activation layer, CL. We denote the resultant matrix as
Λ ∈ RT×dm, which comprises the latent human interaction
and crowd group motion information.

D. Hybrid Motion Pooling

To calculate fine-grained target locations, we incorporate
the learned filter f from DiMP to interact with Λ at each time
step and result in a refined model that holds object properties
along with the direction from the graph information. We
perform low-rank bilinear pooling to connect Query f with
Value Λ in higher-order interaction by:

βi = σ (Wff)� σ (WΛΛi) (6)

Here, Wf ∈ Rk×Df and WΛ ∈ Rk×DΛ are the embedding
matrices that projects f and Λ into an unified dimension
Rk. σ is the activation function. The projected f performs
element-wise multiplication, �, with each projected key σi.
The bilinear pooled features are further aggregated along
with the temporal axis to present a compact representation:

∂T = MaxPoolT ([β1, β2, . . . , βT−1]) ∈ R1×DΛ (7)

Here the MaxPoolT operation is operated in the time
domain T . However, the value of T varies during training and
testing does not affect the final filter ∂T dimension. ∂T later
convolves with the test feature and localize crowd targets.

E. Training and Tracking

1) Offline Training: We train the network based on two
distinguished datasets. The initial model f is trained on the
input from the single-object tracking training sets χsample
similar to DiMP [16]. In parallel, to capture crowd group
properties, the training split γ from the UUCT dataset is

used as input followed by further processing. For training,
both T and m are set to 10, sampled sequentially from the
input videos, respectively. The unified, pooled feature ∂T
derived from the training pairs represent robust information
for both generic object tracking with crowd motion pattern
knowledge, later integrated with the test window pairs as:

`t arg et =
1

N

N∑
i=1

m∑
j=1

∥∥κ (vj ∗ ∂iT , gcj)∥∥2
(8)

Where, N is the number of training iterations performed,
and the test loss `final captures both foreground and back-
ground information discrimination at each iteration with
hinge κ (v, c) based on the convolution and gaussian function
centered at target cj . The regression is performed as:

κ (v, c) =

{
v − c, if c > ε
max(0, c), otherwise (9)

Here, ε is a empirical threshold which penalizes positive
confidence values c for background prediction c ≤ ε. Along
with target center prediction, respective bounding box loss
`bb is learned according to IoU overlap [15], resulting final
loss `final = η`t arg et + `bb. During training, step size η is
set to 10 to better training convergence. Moreover, we set the
unified feature dimension k to 256, Faster R-CNN [58] as
object detector with feature dimension d = 1024. We limit
maximum number of persons nt found at a time step t to
50 to reduce computational burdens. Similarly, dm is set to
128 concerning the computational overhead with increased
number of frames. Total number of training iterations N
is fixed to 500. The graph learning layer l is 10 during
the training and 5 while testing, respectively. The network
architecture outlined in Figure 4, developed using PyTorch4.

2) Online Tracking: We augment the annotated first frame
into 10 samples using the data augmentation approach [62]
to construct initial χsample. On the other hand, we extract
γ0 from the first frame and repeat 10 times to initiate the

4https://pytorch.org



Algorithm 1 Online HyMP Tracking Algorithm
Input : Initial Trained Model weight ∂T , Initial Test sample

χtest = (v0, c0). New frames vq where q > 0
Output: Estimated new positions with updated model

1 χsample ← augment χtest = (v0, c0) pair into 10 samples
2 γ0 ← apply detector and fetch feature, box pair from χtest
3 γ ← repeat γ0 10 times
4 ∂T ← forward pass χsample and γ to the model ρ and

perform 10 training iterations
5 repeat

/* bounding box prediction stage */
6 ytc ∈ R2 ← Perform convolution on δ(vq) ∗ ∂T
7 ybb ∈ R4, pq ← Regress candidate boundinng boxes and

choose one with the highest confidence score.
8 plot ybb in the frame vq

/* model update step */
9 if pq > ε then

/* append frame (+) to memory */
10 χsample ← χsample + δ(vq)
11 γt ← feature, box pair for vq
12 γ ← γ − γt
13 end
14 if length(χsample) > 50 then

/* remove frame (-) from memory */
15 χsample ← χsample − v0

16 γ ← γ + γ0

17 end
18 if 30 new frames are appended then
19 ∂T ← forward pass χsample and γ to the model ρ

and perform 1 training iteration
20 end
21 until Until novel vq without bounding boxes is received

tracking. The resulting ∂T is further leveraged with test
samples, and the respective bounding box ybb is predicted.
The resultant frame is further used to update ∂T if the
target box is predicted with a sufficient confidence score.
For efficiency, we update ∂T after 30 new training frames are
stacked online. To ensure long-term information capture, we
set tracker memory up to 50 frames, where a newer candidate
will discard the oldest ones. With the parameters mentioned
in [15], the bounding boxes are estimated and updated online
using their end-to-end proposal generation technique. The
pseudo code of online tracking is illustrated in Algorithm 1.

V. EXPERIMENTAL RESULTS

Results on UUCT: We first evaluate existing state-of-the-art
correlation filter and deep learning trackers as mentioned in
Section II-B, followed by our HyMP in UUCT. Similar to
OTB100 [35], we select the one-pass evaluation (OPE) to
understand spatial robustness among the trackers. DP is set
to 20 for UUCT. In OPE, each evaluated tracker processes
over 161.6K frames from 70 sequences and averaged for final
result as shown in Figure 5 and Table III (scaled to 100).

According to Figure 5, the best performing correlation
filter-based tracker is STRCF [61] with 30.5 precision and

TABLE III
COMPARISON OF ALGORITHMS’ AUC ON THE BENCHMARK DATASETS.
FOR VOT2018, WE COMPARED EAO SCORE [36]. HYMP-X IS HYMP

WITH XCEPTION [59] AS BACKBONE FEATURE EXTRACTOR

Tracker VOT-2018 OTB100 UAV123 UAV20L DTB70 UUCT

Correlation Filter Trackers

Staple [60] 16.9 58.6 45.0 33.1 35.1 19.6
SRDCF [30] 11.9 59.8 46.4 34.3 36.3 20.3
STRCF [61] 14.3 64.1 48.1 35.4 40.7 20.3

Tracekrs applied Correlation Filter on deeply learned features

HCFT [38] 19.9 64.7 48.6 36.8 41.5 22.7
LCT [5] 22.1 65.2 49.4 35.9 43.1 25.5

Tracekrs exploited end-to-end deep learning pipeline

GCT [18] 27.6 64.8 50.8 46.1 44.2 27.2
UPDT [62] 38.3 70.2 54.5 49.5 45.7 28.1

DiMP-18 [16] 40.2 66 64.3 51.7 46.9 29.8
DiMP-50 [16] 43.1 68.4 65.4 52.8 47.5 30.6

End-to-end HyMP Tracker (ours)

HyMP-18 40.1 66.8 66.2 52.5 47.1 31.7
HyMP-50 42.8 69.1 67.6 52.9 48.6 32.9
HyMP-X 43.6 69.4 68.2 53.7 49.2 34.0

21.5 success scores. Inherent temporal regularization during
target translation yields better performance. However, our
major focus was on the deep learning trackers due to the data
complexity. On recent approaches, DiMP-50, trained using
ResNet-50 [50] achieves best performance with 30.6 success
area under the curve (AUC). Our HyMP algorithm with
similar backbone outperforms DiMP-50 with a large relative
gain of 7.5%, showing the impact of crowd information
learning and pooling fine-grained features. Using a powerful
yet light model, Xception [59], HyMP achieved 34.0 AUC,
established a new baseline for benchmarking future experi-
ments on UUCT. Table IV shows attribute-wise evaluation
of compared algorithms. The table, along with overall AUC
results in Figures 6 and 7, depicts about high complexity of
CSDOV and SV due to frequent group reformation. Although
HyMP-X outperformed DiMP-50 in both categories, more
research is required to improve the overall performance. We
refer the readers to supplementary video5 for further demo.
UAV123 and UAV20L [22]: We demonstrate the general-
izability of HyMP architecture by evaluating it on aerial
SOT benchmark, UAV123, and challenging UAV20L. Our
approach with Xception backbone achieves 68.2 AUC on

5https://www.youtube.com/watch?v=EdwClc71kq8
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Fig. 5: Overall benchmark of SOTA trackers on UUCT



TABLE IV
OVERLAP SUCCESS AUC COMPARISON ON THE UUCT ATTRIBUTES

Model CSMO CSDOV SUMC MUMC CSSRM JCM SV

HyMP-X 31.4 18.6 32.8 26.6 23.6 22.6 28.7
DiMP-50 28.2 16.3 31.9 22.5 22.1 13.4 22.5

UAV123 and 53.7 on UAV20L, which outperforms existing
SOTA algorithms in Table III by maximum 4.3% margin.
The better performance interprets HyMP’s robustness to
overriding human occlusion occurred in several sequences.
DTB70 [24]: While UAV123 mostly had stabilized UAV
tracking sets, similar to UUCT, DTB70 comprises of se-
quences with motions, cluttered scenes, and objects, making
the dataset challenging. We observe that HyMP outperforms
closest performing DiMP-50 [16] by gaining 3.6% AUC. The
slight improvement can be due to UAV’s high altitude and
detectable tiny objects by Faster R-CNN.
VOT2018 [36] and OTB100 [35]: To establish our approach
more generalizable, we evaluate HyMP on these widely
used benchmarks. In VOT2018, HyMP achieves state-of-
the-art result by having 43.6 EAO, outperforming DiMP
by 1.1%. However, our approach achieves competitive 69.4
AUC, where best model, UPDT [62] scores 70.2 on OTB100.
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Fig. 6: Benchmark on Crowd Split and Dispersed Out of View (CSDOV)
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Fig. 7: Benchmark on Scale Variation (SV) Attribute

VI. CONCLUSION

We introduce the crowd group tracking problem from the
UAVs using a single target window. To establish the baseline
evaluation of algorithms in this area, we propose a photore-
alistic benchmark, UUCT. The dataset comprises of 161.6K
frames in 70 clips, distributed in 7 attributes. We address
current SOT algorithms’ limitations on crowd group tracking
context due to objective mismatch. To this end, we propose a

new approach, HyMP, to learn human-to-human interactions
and group reformations by exploiting graph convolutions and
low-rank bilinear pooling. We then applied HyMP on the
baseline DiMP tracker and outperformed on UUCT and other
SOT benchmarks. Our future work will focus on extending
UUCT with diverse yet challenging data, better GT generator
for localizing crowd groups with lower OE, and designing a
lightweight, robust crowd-aware discriminator model.
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evaluation methodology for single-target trackers,” IEEE transactions
on pattern analysis and machine intelligence, vol. 38, no. 11, 2016.

[4] M. Fiaz, A. Mahmood, S. Javed, and S. K. Jung, “Handcrafted and
deep trackers: Recent visual object tracking approaches and trends,”
ACM Computing Surveys (CSUR), vol. 52, no. 2, p. 43, 2019.

[5] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Adaptive correlation
filters with long-term and short-term memory for object tracking,”
International Journal of Computer Vision, vol. 126, no. 8, 2018.
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